

Monday 28 January 2013 – Morning

AS GCE MATHEMATICS

4732/01 Probability and Statistics 1

QUESTION PAPER

Candidates answer on the Printed Answer Book.

OCR supplied materials:

- Printed Answer Book 4732/01
- List of Formulae (MF1)

nulae (MFT)

Other materials required: • Scientific or graphical calculator Duration: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

These instructions are the same on the Printed Answer Book and the Question Paper.

- The Question Paper will be found in the centre of the Printed Answer Book.
- Write your name, centre number and candidate number in the spaces provided on the Printed Answer Book. Please write clearly and in capital letters.
- Write your answer to each question in the space provided in the Printed Answer Book. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Answer **all** the questions.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Do **not** write in the bar codes.
- You are permitted to use a scientific or graphical calculator in this paper.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.

INFORMATION FOR CANDIDATES

This information is the same on the Printed Answer Book and the Question Paper.

- The number of marks is given in brackets [] at the end of each question or part question on the Question Paper.
- You are reminded of the need for clear presentation in your answers.
- The total number of marks for this paper is **72**.
- This Printed Answer Book consists of **12** pages. The Question Paper consists of **8** pages. Any blank pages are indicated.

INSTRUCTION TO EXAMS OFFICER/INVIGILATOR

• Do not send this Question Paper for marking; it should be retained in the centre or recycled. Please contact OCR Copyright should you wish to re-use this document.

- 1 When a four-sided spinner is spun, the number on which it lands is denoted by X, where X is a random variable taking values 2, 4, 6 and 8. The spinner is biased so that P(X = x) = kx, where k is a constant.
 - (i) Show that $P(X = 6) = \frac{3}{10}$. [2]

(ii) Find
$$E(X)$$
 and $Var(X)$. [5]

- 2 (i) Kathryn is allowed three attempts at a high jump. If she succeeds on any attempt, she does not jump again. The probability that she succeeds on her first attempt is $\frac{3}{4}$. If she fails on her first attempt, the probability that she succeeds on her second attempt is $\frac{3}{8}$. If she fails on her first two attempts, the probability that she succeeds on her third attempt is $\frac{3}{16}$. Find the probability that she succeeds. [3]
 - (ii) Khaled is allowed two attempts to pass an examination. If he succeeds on his first attempt, he does not make a second attempt. The probability that he passes at the first attempt is 0.4 and the probability that he passes on either the first or second attempt is 0.58. Find the probability that he passes on the second attempt, given that he failed on the first attempt.

3 The Gross Domestic Product per Capita (GDP), *x* dollars, and the Infant Mortality Rate per thousand (IMR), *y*, of 6 African countries were recorded and summarised as follows.

n = 6 $\sum x = 7000$ $\sum x^2 = 8700000$ $\sum y = 456$ $\sum y^2 = 36262$ $\sum xy = 509900$

(i) Calculate the equation of the regression line of y on x for these 6 countries.

The original data were plotted on a scatter diagram and the regression line of y on x was drawn, as shown below.

- (ii) The GDP for another country, Tanzania, is 1300 dollars. Use the regression line in the diagram to estimate the IMR of Tanzania. [1]
- (iii) The GDP for Nigeria is 2400 dollars. Give two reasons why the regression line is unlikely to give a reliable estimate for the IMR for Nigeria. [2]
- (iv) The actual value of the IMR for Tanzania is 96. The data for Tanzania (x = 1300, y = 96) is now included with the original 6 countries. Calculate the value of the product moment correlation coefficient, *r*, for all 7 countries. [4]
- (v) The IMR is now redefined as the infant mortality rate per hundred instead of per thousand, and the value of r is recalculated for all 7 countries. Without calculation state what effect, if any, this would have on the value of r found in part (iv).
- 4 (i) How many different 3-digit numbers can be formed using the digits 1, 2 and 3 when

(a)	no repetitions are allowed,	[1]
(b)	any repetitions are allowed,	[2]
(c)	each digit may be included at most twice?	[2]

(ii) How many different 4-digit numbers can be formed using the digits 1, 2 and 3 when each digit may be included at most twice?

[4]

- 5 A random variable X has the distribution $B(5, \frac{1}{4})$.
 - (i) Find
 - (a) E(X), [1]
 - (b) P(X=2). [2]
 - (ii) Two values of X are chosen at random. Find the probability that their sum is less than 2. [4]
 - (iii) 10 values of *X* are chosen at random. Use an appropriate formula to find the probability that exactly 3 of these values are 2s. [3]
- 6 The masses, *x* grams, of 800 apples are summarised in the histogram.

(i) On the frequency density axis, 1 cm represents *a* units. Find the value of *a*. [3]

[4]

(ii) Find an estimate of the median mass of the apples.

© OCR 2013

7 (i) Two judges rank *n* competitors, where *n* is an even number. Judge 2 reverses each consecutive pair of ranks given by Judge 1, as shown.

Competitor	<i>C</i> ₁	C ₂	<i>C</i> ₃	C ₄	C ₅	<i>C</i> ₆	 C_{n-1}	C _n
Judge 1 rank	1	2	3	4	5	6	 <i>n</i> – 1	n
Judge 2 rank	2	1	4	3	6	5	 п	<i>n</i> – 1

Given that the value of Spearman's coefficient of rank correlation is $\frac{63}{65}$, find *n*. [4]

- (ii) An experiment produced some data from a bivariate distribution. The product moment correlation coefficient is denoted by r, and Spearman's rank correlation coefficient is denoted by r_s .
 - (a) Explain whether the statement

$$r = 1 \Rightarrow r_s = 1$$

is true or false.

(b) Use a diagram to explain whether the statement

$$r \neq 1 \Rightarrow r_s \neq 1$$

is true or false.

- 8 Sandra makes repeated, independent attempts to hit a target. On each attempt, the probability that she succeeds is 0.1.
 - (i) Find the probability that

(a)	the first time she succeeds is on her 5th attempt,	[2]
------------	--	-----

- (b) the first time she succeeds is after her 5th attempt, [2]
- (c) the second time she succeeds is before her 4th attempt. [4]

Jill also makes repeated attempts to hit the target. Each attempt of either Jill or Sandra is independent. Each time that Jill attempts to hit the target, the probability that she succeeds is 0.2. Sandra and Jill take turns attempting to hit the target, with Sandra going first.

(ii) Find the probability that the first person to hit the target is Sandra, on her

(a)	2nd attempt,	[2]
(b)	10th attempt.	[3]

[1]

[2]

"3 sf" means "answer which rounds to ... to 3 sf". Penalise over–rounding if no better answer is seen and penalise only once in the paper.

Question		n	Answer	Marks	Guidance			
1	(i)		2k + 4k + 6k + 8k = 1	M1	or $2 + 4 + 6 + 8 = 20$ M1	Must see correct wk'g for $k = \frac{1}{20}$,		
			$k = \frac{1}{20}$ AND $6 \times \frac{1}{20} = \frac{3}{10}$ AG	A1	Must see both for A1	otherwise M0A0		
						NB $k \times 6 = \frac{3}{10} \implies k = \frac{1}{20}$ M0A0		
					or $2k + 4k + 6k + 8k = 20k$ M1	(even if tested by showing that $k = \frac{1}{20}$		
					$P(X=6) = \frac{3}{20k} = \frac{3}{10}$ A1	gives $\Sigma p=1$)		
						Just showing $\frac{1}{10} + \frac{2}{10} + \frac{3}{10} + \frac{4}{10} = 1$		
				[2]		M0A0		
1	(ii)		$2 \times \frac{1}{10} + 4 \times \frac{2}{10} + 6 \times \frac{3}{10} + 8 \times \frac{4}{10}$ oe	M1	\geq 3 terms correct ft their values of p, den $\Sigma p = 1$	Allow i.t.o. k for M1 \div 4 M0		
			= 6	A1	cao			
			$2^2 \times \frac{1}{10} + 4^2 \times \frac{2}{10} + 6^2 \times \frac{3}{10} + 8^2 \times \frac{4}{10}$ oe (= 10)	M1	\geq 3 terms correct; ft their values of p;	Allow ito k for M1M1 \div 4 M0		
			- '6' ²	M1	ft their values of p; dep +ve result & $\Sigma p = 1$	$\sqrt{4} = 2$ lose final A1, not ISW, unless labelled sd		
			= 4	A1				
				[5]				
2	(i)		$\frac{3}{4} + \frac{1}{4} \times \frac{3}{8}$	M1	$\frac{1}{4} \times \frac{5}{8} \times \frac{13}{16}$ (= $\frac{65}{512}$ or 0.127)			
			$+\frac{1}{4}\times\frac{5}{8}\times\frac{3}{16}$	M1	$1 - \frac{1}{4} \times \frac{5}{8} \times \frac{13}{16}$			
			$=\frac{447}{512}$ or 0.873 (3 sf)	A1				
			512	[3]				
2	(ii)		0.6 <i>p</i> or equiv seen	B1	Tree diag alone insufficient for mark.	NB $0.6 \times 0.3 = 0.18$ seen at the end is		
			0.4 + 0.6p = 0.58	M1	Or $0.6p = 0.18$. "0.18" alone insufficient	probably a check, not an answer.		
			p = 0.3	A1		But if 0.3 seen and 0.18 is very clearly		
				[3]		indicated as the ans then B1M1A0		

Question		on	Answer	Marks	Guidan	ce
3	(i)		$S_{xx} = 8700000 - \frac{7000^2}{6} \qquad (= 533333)$ $S_{xy} = 509900 - \frac{7000 \times 456}{6} \qquad (= -22100)$	M1	Correct subst'n in any correct S formula	
			$b = -\frac{"22100"}{"533333"} \text{ or } -\frac{663}{16000} (=-0.0414)$ $y - \frac{456}{6} = (-0.0414"(x - \frac{7000}{6}))$ $y = -0.0414x + 124 \text{ (3 sf)}$	M1 M1 A1 [4]	Correct subst'n in any correct <i>b</i> formula from two correct <i>S</i> formulae ft their <i>b</i> except if using <i>r</i> or $y = -\frac{663}{16000} x + \frac{3979}{32}$ or $y = -0.041x + 124$	or $a = \frac{456}{6} - ("-0.0414") \times \frac{7000}{6}$ oe ft "b" Allow y=-0.04x+124 if -0.041 seen above
3	(ii)		70 to 72	B1 [1]	or 71 per thousand, NOT 71000	No ft from (i) Ignore method
3	(iii)		Extrapolation oe	B1	Allow "2400 is beyond graph"}"Not shown on the graph" or}1st B1 only"Line drops low, or below 0"}"Outlier"}	"Line only allows for countries poorer than Nigeria" 1 st B1 Allow "Value for Nigeria is –ve 1 st B1
			Corr'n not high or small sample	B1	Poor corr'n oe, or pts not close to line oe $2^{nd} B1$	NOT "Other factors may apply" oe Ignore all else
3	(iv)		$S_{xx} = 8700000 + 1300^2 - \frac{(7000 + 1300)^2}{7}$		or $10390000 - \frac{(8300)^2}{7} = \frac{3840000}{7}$ or 548571	
			$S_{yy} = 36262 + 96^2 - \frac{(456+96)^2}{7}$ $S_{xy} = 509900 + 1300 \times 96 - \frac{8300 \times 552}{7}$	M1 A1	or $45478 - \frac{552^2}{7} = \frac{13642}{7}$ or 1948.86 or $634700 - \frac{8300 \times 552}{7} = -\frac{138700}{7}$ or -19814.3	Correct sub in any correct S formula M1 Correct value of any S seen or implied by r A1
			$r = \frac{"-19814.3"}{\sqrt{"548571" \times "1948.86"}}$	M1	Correct subst'n in any correct r formula from 3 correct subs in 3 correct S formulae, ie all correct method	SC If $n = 6$, but otherwise correct allow M1A0M1A0 (ans $r = -0.574$, must see wking)
			= -0.606 (3 sf)	A1 [4]		

Question		on	Answer	Marks	Guidance				
3	(v)		No effect oe	B1 [1]	Stay the same oe Allow just "No"	Ignore all else			
4	(i)	(a)	6	B1 [1]					
4	(i)	(b)	3×3×3 = 27	M1 A1	$3! + 7 \times 3$ $3 + 3 \times 6 + 6$ $3! \times 4 + 3$ Complete correct method. Allow methods equiv to these. Only allow other methods if they appear correct	(Explanation for 3! × 4 + 3: 123: 3!, 112 & 122: 3!, 223 & 233: 3!, 331 & 311: 3! 111, 222, 333: 3 Candidates need not include this)			
				[2]					
4	(i)	(c)	(i)(b) - 3If answer is not 24, this method must be explicitly stated in order to give M1A1ft	M1	or $3! + 6 \times 3$ or $3! + 3! \times 3$ or $6 + 3! \times 3! \div 2!$ or $3! \times 4$ Complete correct method. Allow methods equiv to these.	or 8×3 (Explanation: there are 8 possible orders starting with 1. Candidates need not include this)			
			= 24 ft their (i)(b)	A1ft [2]	Only allow other methods if they appear correct				
4	(ii)		eg 1123: $\frac{4!}{2!} \times 3$ alone allow M1 for $\frac{4!}{2!} \times 3!$ alone eg 1122: $\frac{4!}{2!2!} \times 3$ alone allow M1 for $\frac{4!}{2!2!} \times 3!$ alone	M2 M2	$3! \times {}^{4}C_{1} \times 3$ or $3! \times 12$ M1 $\div 2$ M1dep (= 36) $3! \times {}^{4}C_{2}$ M1 $\div 2$ M1dep (= 18)Allow methods equiv to these, eg correctly listing cases Only allow other methods if they appear correct.NB $3 \times 3 \times 2 \times 2 = 36$ & $3 \times 3 \times 2 \times 1 = 18$	This method only scores if $3 \times 3 \times 3 - \dots$ is used: No. with 4 rep'ns = 3 M1 No. with 3 rep'ns = $\frac{4!}{3!}$ M1 $\times 6$ (= 24) M1 or 8 × 3 M2 81-('3'+'24') or 81-27 M1 (allow 81-3 or 81-24) 18, 36 only score if a correct method seen,, or eg:			
			Total = 54	A1 [5]	are incorrect methods unless clear justification given	18 orders listed starting with "1" or 18 orders listed with two repetitions			

Question		n	Answer	Marks	Guidance					
5			If incorrect p used consistently in all parts of q	u 5, no ml	ks in (i)(a) & (b) but can score M-marks in (ii) a	nd (iii).				
5	(i)	(a)	1.25 oe	B1						
				[1]						
5	(i)	(b)	0.8965 - 0.6328	M1	${}^{5}C_{2}(\frac{3}{4})^{3}(\frac{1}{4})^{2}$					
			= 0.264 (3 sf)	A1	$=\frac{135}{512}$ or 0.264 (3 sf)	Answer which rounds to 0.264				
				[2]						
5	(ii)			M1	$\left(\left(\frac{3}{4}\right)^5\right)^2$ or $\left(\frac{243}{1024}\right)^2$ or $\left(\frac{3}{4}\right)^{10}$ oe $\left(=\frac{59049}{1048576}\right)$	B(10. 0.25) seen or implied M1				
			Answer which rounds to 0.244	M1	$\left(\frac{3}{4}\right)^5 \times 5\left(\frac{3}{4}\right)^4 \left(\frac{1}{4}\right)$ or $\frac{243}{1024} \times \frac{405}{1024}$ or $5\left(\frac{3}{4}\right)^9 \left(\frac{1}{4}\right)$	Table or formula with $n = 10$ used M1				
					$(=\frac{98415}{1048576})$	$P(X \le 1)$ from table				
				M1	$2 \times (\text{attempt P}(1, 0) \text{ alone})$	or $(\frac{3}{4})^{10} + 10(\frac{3}{4})^9 \times (\frac{1}{4})$ M1				
				1011	$(NOT 2 \times (P(1.0) + P(0.0)))$					
						0.244 (3 sf) A1				
					If $P(sum \le 2)$, all three M-mks are available,					
					but for 3rd M1, must be $2 \times (P(1,0)+P(2,0))$	$P(X \le 2) = 0.526$ from table $n = 10$				
					only	M1M1M1A0				
				Δ1	Ans 0.150 probably M1M1M0A0 but check	SC $P(X=2)$ answer 0.282: B1				
					working					
					Ans 0.188 probably M0M1M1A0 but check					
					working					
				[4]						
5	(iii)		Use of 0.2637 or 0.264	M1	or their (i)(b)	SC allow ${}^{10}C_3 \times (1-0.282)^7 \times 0.282^3$				
			$^{10}C_3 \times (1 - 0.2637')' \times 0.2637'^3$	M1	ft (i)(b) allow ft their (ii) for this M1 only	M0M1				
						(0.282 comes from P(3 totals = 2))				
			= 0.258 (3 sf)	Al	Correct ans, no working: M1M1A1					
				[3]						

	Question		Answer	Marks	Guidance				
6	(i)		Attempt find total area, (even if includes a^2) eg 20×1.4 a +10×3.4 a +6×4.6 a +4×2.6 a +10×3 a +30 a		eg tot <u>area</u> = 16cm^2 or $16a$ M1 800/16 (= 50) M1	Trial methods, eg:			
			or 28a+34a+27.6a+10.4a+30a+30a		$a \times 10 = 50$ $a = 5$ A1	$a = 5$ gives $7 \times 20 + 17 \times 10 + 23 \times 6 + \dots$			
			or 20×1.4+10×3.4+6×4.6+4×2.6+10×3+30			= 800 M1			
			or 28+34+27.6+10.4+30+30		eg tot area = 400 (sqs) M1	But no of apples = 800 M1			
			or 7×20+17×10+23×6 +		800/400 (= 2) M1	Hence $a = 5$ A1			
			or 160 <i>a</i> or 160 or 16 or 16 <i>a</i> (if area, not ht)	M1	$1.4a \times 20 = 70 \times 2$ $a = 5$ A1				
						$a = 10$ gives $14 \times 20 + 34 \times 10 + 46 \times 6 + . =$			
			$800 \div$ their total (must involve area, not ht)	Mldep		1600 M1			
			$eg 160a = 800, 800 \div$	A 1	Correct ans with nothing incorrect seen:	But no of apples = 800 MI			
			<i>u</i> - 5	AI	MIMIAI	Hence $a = 5$ A1			
			"Box" \Rightarrow area. "Square" possibly \Rightarrow area		But where the correct answer clearly results	NOT "1cm = 5" (because may just			
					from incorrect working, eg $a = 800/167 = 4$	8 come from counting squares)			
					rounded to $a = 5$, then max M1M1A0	<u>NB total ht = 16cm so if 16 seen, must</u>			
						clearly be area eg 800/16 may score 0			
-	(**)			[3]		or 2			
6	(11)		$\frac{1}{2}$ total area or $\frac{1}{2}$ total no. apples ft their 6(i)	BII		Examples of correct methods:			
			Median is in 50 – 56 class stated or implied	M1		$400 - (7 \times 20 + 17 \times 10) (= 90)$			
						$50 + \frac{30}{23 \times 6} \times 6 = 54$			
						200 - (70 + 85) (= 45)			
			Coloulate (annex)? of your close close			$50 + \frac{"45"}{50} \times 6 = 54$			
			Calculate (approx) $\frac{1}{3}$ of way along class			69 69			
			or $\frac{1}{3}$ of way from top of class	M1		$400.5 - (7 \times 20 + 17 \times 10)$ (= 90.5)			
						$50 + \frac{"90.5"}{23\times6} \times 6 = 54$			
			Median = 53.9 to 54 Not eg 54.2	A1	Correct ans with nothing incorrect seen:	23×0			
					MIMIA1	Use of $LB = 49.5$:			
					Dest and some the second secon	eg median = 49.5 +appr $\frac{2}{2} \times 6 = 53.4$			
				[4]	But where the correct answer clearly results from incorrect working, $ag = \frac{800}{167} - 4$	8 B1M1A1A0			
				[*]	rounded to $a = 5$, then max M1M1A0				

Mark Scheme

Question		n	Answer	Marks	Guidance			
7	(i)		$\Sigma d^2 = n$ seen or implied $1 - \frac{6 \times \text{anything}}{n(n^2 - 1)} = \frac{63}{65}$ or $\frac{6 \times \text{anything}}{n(n^2 - 1)} = \frac{2}{65}$	M1 M1	eg $1 - \frac{6 \times \Sigma d^2}{n(n^2 - 1)}$ or $1 - \frac{6 \times n^2}{n(n^2 - 1)}$ or $1 - \frac{6 \times 1^n}{n(n^2 - 1)}$ or $1 - \frac{6 \times 6^2}{n(n^2 - 1)} = \frac{63}{65}$	Trial method: $\Sigma d^2 = 14$ M1 $1 - \frac{6 \times 14}{14(14^2 - 1)}$ oe M1 $= \frac{63}{65}$ A1 (0.969 : A0)		
			$\frac{6}{(n^2-1)} = \frac{2}{65}$ or eg 390 = 2(n^2 - 1)	A1 depM2	Any <u>correct</u> eqn after cancelling <i>n</i> or take out factor of <i>n</i> ; can be implied by $n = 14$	$\Rightarrow n = 14 \qquad A1 \\ Conclusion needed$		
			$n = 14$ NOT $n = \pm 14$	A1	But A0 if $n = 14$ clearly follows from incorrect working			
				[4]	If no working or unclear working, but n = 14, M1M1A1A1			
7	(ii)	(a)	$r = 1 \implies$ st line, hence true (or $r_s = 1$) oe Explanation essential Must state or imply "true"	B1	$r = 1 \implies y$ incr as x incr, so $r_s = 1$ oe Allow "True because perfect corr'n" or "True because $r = 1$ means pts ranked in order so $r_s = 1$ " " $r = 1$ means the ranks will agree" " $r = 1$ means all d's are 0, hence $r_s = 1-0 = 1$ "	NOT " <i>r</i> incr so ranks incr" NOT " $r_s = r$ for ranks so true" NOT "True because strong corr'n"		
7	(ii)	(b)	Diag, ≥ 3 pts, not on st line but with $x_{n+1} > x_n$ & $y_{n+1} > y_n$, Zig zag line or curve, moving up & right	B1	Ignore explan if correct diag given Ignore any st line drawn Allow numerical example for which $r \neq 1$ but $r_s = 1$. If expl'n contradicts diag, mark diag			
			so r_s can still be 1	B1dep [2]	For 2 nd B1 must state or imply "false"			
			eg "expon'l curve gives $r \neq 1$ but $r_s = 1$ " B1B1					

(Question		Answer	Marks	Guidance				
8	(i)	(a)	$0.9^4 \times 0.1$	M1					
			$=\frac{6561}{100000}$ or 0.0656 (3sf)	A1					
			100000	[2]					
8	(i)	(b)	0.95	M1	Allow 0.9^4 or $1-0.9^5$:M1	$1 - (0.1 + 0.9 \times 0.1 + 0.9^2 \times 0.1 + 0.9^2$			
					but $1-0.9^n \ (n \neq 5)$ or 0.1×0.9^n :M0	$\dots 0.9^4 \times 0.1)$			
			$=\frac{59049}{100000}$ or 0.59 (2 sf)	A1		Allow without "1 –" OR omit last			
			100000			term			
				[2]		$NB \ 0.9^{3} \times 0.1 = 0.0590 \ MOA0$			
8	(i)	(c)	0.1×0.1 or $[0.1 \times 0.1 \times 0.9 + 0.1 \times 0.1 \times 0.1]$ oe	M1		$3 \times 0.1^2 \times 0.9 + 0.1^3$ <u>no incorrect multiples</u>			
			$+0.1 \times 0.9 \times 0.1$ oe	M1	M1M1 two correct terms, <u>no incorrect multiples</u>	M2 for 1st term; M1 for 2nd			
			$+0.9\times0.1\times0.1$ oe	MI	M1 all correct				
			0.000	. 1		This method only scores using $1 - 7$:			
			= 0.028	AI	Ans 0.02 / probably MOM1M1A0 but check	0.9° ; $3 \times 0.9^\circ \times 0.1$ <u>no incorrect multiples</u>			
					working				
					SC if no M mlra soored:	1 - one or both terms with no further withing: $M1(den M1)$			
						wring. $M1(dep M1)$			
				[4]	SSF, SSS, FSS, SFS or SS ESS SES soon or implied: D1	eg 1 = 0.9 atome with working			
0	(;;)	(a)	$0.0 \times 0.8 \times 0.1$	[4] 	0155, F55, 5F5 seen of implied. B1	NOT $0.0 \times 0.8 \times 0.1 \times 0.2 = 0.0144 \cdot M0A0$			
0	(11)	(a)			(-0.0576)	NOT $0.9 \times 0.8 \times 0.1 \times 0.2 = 0.0144$. MOAO			
			$=\frac{3}{125}$ or 0.072	[2]	(-0.0370)	NO1 0.9~0.8~0.2= 0.144. MOA0			
8	(ii)	(h)	$0.9^{9 \text{ or } 10} \times 0.8^{9 \text{ or } 10} \times 0.1 \text{ (or } \times 0.2 \text{ not}$	<u>[4]</u>	allow $0.9^{9 \text{ or } 10} \times 0.8^{9 \text{ or } 10} \times 0.1 \times {}^{18,19,20}\text{C}$.	If ans = $0.00360 \text{ or } 0.0150 \text{ see SC}$			
0	(11)	(0)	×0 1×0 2)	1411		helow			
			$(0.9 \times 0.8)^9 \times 0.1$ oe	M1	fully correct	<u>0010 w</u>			
			$= 5.2 \times 10^{-3}$ or 0.0052 (2 sf)	A1					
				111					
					SC Consistent use of 0.8 for both girls: $(ii)(a)$	0 128 (ii)(b) 0 00360			
					or 0.9 for both girls: (ii)(a)	0.081 (ii)(b) 0.0150 If both these ans			
				[3]	seen, allow (a) 0 (b) B1				